首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4295篇
  免费   1405篇
  国内免费   1896篇
测绘学   2篇
大气科学   34篇
地球物理   157篇
地质学   6961篇
海洋学   143篇
天文学   52篇
综合类   183篇
自然地理   64篇
  2024年   31篇
  2023年   130篇
  2022年   216篇
  2021年   292篇
  2020年   248篇
  2019年   371篇
  2018年   341篇
  2017年   350篇
  2016年   381篇
  2015年   383篇
  2014年   383篇
  2013年   382篇
  2012年   374篇
  2011年   460篇
  2010年   355篇
  2009年   391篇
  2008年   292篇
  2007年   361篇
  2006年   283篇
  2005年   199篇
  2004年   190篇
  2003年   163篇
  2002年   126篇
  2001年   96篇
  2000年   97篇
  1999年   119篇
  1998年   61篇
  1997年   87篇
  1996年   75篇
  1995年   88篇
  1994年   66篇
  1993年   47篇
  1992年   50篇
  1991年   38篇
  1990年   29篇
  1989年   15篇
  1988年   13篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
排序方式: 共有7596条查询结果,搜索用时 328 毫秒
941.
渤海莱州湾凹陷南部古近系沙三下亚段广泛发育陆源碎屑与碳酸盐混合沉积。通过对井壁取心、测井及综合化验资料的分析,对研究区混合沉积特征、发育模式及控制因素进行分析。结果表明: 研究区既发育同一岩层内的混合沉积,又发育碳酸盐岩与陆源碎屑的互层混合沉积。混合沉积形成于两大物源注入背景下的湖泊滨岸环境,可进一步分为泥坪、砂质滩坝、浅滩和半深湖等混合沉积亚相,主要体现为波浪和湖流作用的双重影响。沙三下亚段整体呈现出水退式发育的特点,主要发育湖侵域和高位域,湖侵域主要发育半深湖混合沉积和浅滩混合沉积,高位域主要发育砂质滩坝混合沉积。混合沉积物受古地貌、古气候、古物源和湖平面变化的控制,优势储集亚相为砂质滩坝混合沉积亚相和浅滩混合沉积亚相。该研究成果不仅为莱州湾凹陷南部古近系优质动用储量研究提供了指导,而且为下一步勘探指明了方向。  相似文献   
942.
为揭示黑龙江省东部早古生代晨明组沉积物源区特征及其沉积构造背景,对晨明组进行了地球化学特征研究。结果表明:晨明组岩石样品化学蚀变指数(ICA)值和斜长石蚀变指数(IPA)值较低、成分变异指数(ICV)值中等偏高,指示晨明组沉积物来源于不成熟的物质源区,并经历了较弱的化学风化作用和活动构造背景下的初次循环;LREE富集、HREE稳定和明显的负Eu异常,指示沉积物源区物质具有明显的上地壳特征且沉积物源岩为长英质火成岩;主量、微量和稀土元素特征共同指示晨明组形成于活动大陆边缘环境或大陆岛弧环境。结合前人研究成果,判定晨明组沉积物来源于经历了弱-中等程度化学风化作用的早古生代花岗质岩,沉积构造背景可能为靠近大陆岛弧的活动大陆边缘环境。  相似文献   
943.
Predicting the hydrodynamics, morphology and evolution of ancient deltaic successions requires the evaluation of the three-dimensional depositional process regime based on sedimentary facies analysis. This has been applied to a core-based subsurface facies analysis of a mixed-energy, clastic coastal-deltaic succession in the Lower-to-Middle Jurassic of the Halten Terrace, offshore mid-Norway. Three genetically related successions with a total thickness of 100–300 m and a total duration of 12.5 Myr comprising eight facies associations record two initial progradational phases and a final aggradational phase. The progradational phases (I and II) consist of coarsening upward successions that pass from prodelta and offshore mudstones (FA1), through delta front and mouth bar sandstones (FA2) and into erosionally based fluvial- (FA3) and marine-influenced (FA4) channel fills. The two progradational phases are interpreted as fluvial- and wave-dominated, tide-influenced deltas. The aggradational phase (III) consists of distributary channel fills (FA3 and FA4), tide-dominated channels (FA5), intertidal to subtidal heterolithic fine-grained sandstones (FA6) and coals (FA7). The aggradational phase displays more complex facies relationships and a wider range of environments, including (1) mixed tide- and fluvial-dominated, wave-influenced deltas, (2) non-deltaic shorelines (tidal channels, tidal flats and vegetated swamps), and (3) lower shoreface deposits (FA8). The progradational to aggradational evolution of this coastal succession is represented by an overall upward decrease in grain size, decrease in fluvial influence and increase in tidal influence. This evolution is attributed to an allogenic increase in the rate of accommodation space generation relative to sediment supply due to tectonic activity of the rift basin. In addition, during progradation, there was also an autogenic increase in sediment storage on the coastal plain, resulting in a gradual autoretreat of the depositional system. This is manifested in the subsequent aggradation of the system, when coarse-grained sandstones were trapped in proximal locations, while only finer grained sediment reached the coastline, where it was readily reworked by tidal and wave processes.  相似文献   
944.
The Upper Triassic Xujiahe Formation in the northwestern Sichuan Basin, China, is a typical tight gas sandstone reservoir that contains natural fractures and has an average porosity of 1.10% and air permeability less than 0.1 md because of compaction and cementation. According to outcrops, cores and image logs, three types of natural fractures, namely, tectonic, diagenetic and overpressure-related fractures, have developed in the tight gas sandstones. The tectonic fractures include small faults, intraformational shear fractures and horizontal shear fractures, whereas the diagenetic fractures mainly include bed-parallel fractures. According to thin sections, the microfractures also include tectonic, diagenetic and overpressure-related microfractures. The diagenetic microfractures consist of transgranular, intragranular and grain-boundary fractures. Among these fractures, intraformational shear fractures, horizontal shear fractures and small faults are predominant and significant for fluid movement. Based on the Monte Carlo method, these intraformational shear fractures and horizontal shear fractures improve the reservoir porosity and permeability, thus serving as an important storage space and primary fluid-flow channels in the tight sandstones. The small faults may provide seepage channels in adjacent layers by cutting through layers. In addition, these intragranular and grain-boundary fractures increase the connectivity of the tight gas sandstones by linking tiny pores. The tectonic microfractures improve the seepage capability of the tight gas sandstones to some extent. Low-dip angle fractures are more abundant in the T3X3 member than in the T3X2 and T3X4 members. The fracture intensities of the sandstones in the T3X3 member are greater than those in the T3X2 and T3X4 members. The fracture intensities do not always decrease with increasing bed thickness for the tight sandstones. When the bed thickness of the tight sandstones is less than 1.0 m, the fracture intensities increase with increasing bed thickness in the T3X3 member. Fluid inclusion evidence and burial history analysis indicate that the tectonic fractures developed over three periods. The first period was at the end of the Triassic to the Early Jurassic. The tectonic fractures developed during oil generation but before the matrix's porosity and permeability reduced, which suggests that these tectonic fractures could provide seepage channels for oil migration and accumulation. The second period was at the end of the Cretaceous after the matrix's porosity and permeability reduced but during peak gas generation, which indicates that gas mainly migrated and accumulated in the tectonic fractures. The third period was at the end of the Eogene to the Early Neogene. The tectonic fractures could provide seepage channels for secondary gas migration and accumulation from the Upper Triassic Xujiahe Formation into the overlying Jurassic Formation.  相似文献   
945.
Bioturbated sediments recording distal expressions of paralic depositional environments are increasingly being exploited for hydrocarbons in the super-giant Pembina Field (Cardium Formation), Alberta, Canada. These strata were previously considered unproductive due to limited vertical and horizontal connectivity between permeable beds. In these “tight oil” plays (0.1–10 mD), pressure decay profile permeametry (micropermeability) data indicate that sand-filled burrows provide vertical permeable pathways between bioturbated and parallel-laminated sandstone beds in the central, northeast and northwest parts of the field. This relationship enables the economic exploitation of hydrocarbons via horizontal drilling and multi-stage hydraulic fracturing. As the exploitation of bioturbated strata progresses in the Pembina Field, additional primary targets are being sought out, and horizontal waterflooding is being considered in areas where horizontal wells exist. Proximal to historical produced conventional targets, reservoir analyses indicate that areas where the bioturbated facies average permeability lies between 0.35 mD and 0.85 mD and sandstone isopach thicknesses are between 0.25 m and 2.5 m should be targeted in east-central Pembina.Micropermeability values enable correlation of bulk permeability from plugs and full-diameter samples to the heterogeneous permeability distributions in intensely bioturbated strata. Bulk and micropermeability data are graphically compared, and permeability distributions are mapped across the field. Using isopach thickness of bioturbated facies, production data, and permeability data, “sweet spots” are identified for placement of effective waterfloods.Production information for recently drilled horizontal wells in the Pembina Field demonstrate that bioturbated muddy sandstones and sandy mudstones in paralic environments can be economically exploited when sand-filled burrows provide connectivity between sand beds. However, well performance within these poorly understood unconventional tight oil plays can better be predicted with an in-depth characterization of their facies and complex permeability heterogeneities. Based on our results, it is clear that micropermeability analysis can be effectively employed to differentiate between economic and sub-economic plays, identify areas with high effective permeability, and high-grade areas for enhanced oil recovery schemes.  相似文献   
946.
Digital outcrop models help to constrain the interactions of stratigraphic and structural heterogeneity on ancient depositional systems. This study uses a stochastic approach that incorporates stratigraphic and structural modeling to interrogate the three-dimensional morphology of deep-water channel strata outcropping on Sierra del Toro in the Magallanes Basin of Chile. This approach considers the relative contributions, and associated uncertainty, of erosional downcutting versus post-depositional structural folding and small-offset faulting on the present-day configuration of the submarine channel complexes. Paleodepositional channel-belt gradients were modeled using a combination of three-dimensional visualization, stochastic surface modeling, palinspastic restoration, and decompaction modeling that are bound with errors constrained by stratigraphic and structural uncertainty. Modeling results indicate that at least 100 m of downcutting occurs over 6 km, and the resultant thalweg gradient of 64–125 m/km (decompacted) suggests that the Cerro Toro axial channel belt is an out-of-grade depositional system. Furthermore, the presence of steeper segments (100–175 m/km decompacted) suggests the preservation of one or more knickpoints that are similar in magnitude to tectonically-induced knickpoints on the modern seafloor. The interpreted knickpoints are correlated with a decreasing channel width-depth ratio and an increase of channel depth. These results indicate that stochastic surface modeling using digital outcrop models can constrain stratigraphic interpretations and post-depositional structural heterogeneity.  相似文献   
947.
目前琼东南盆地北礁凹陷中中新统梅山组顶部丘形反射引起广泛关注,但对其成因有不同认识。本文通过高精度二维、三维地震、钻井资料,研究丘形反射的特征。研究表明北礁地区梅山组顶部发育近东西向展布的长条形丘体,丘间为水道,丘内为中-弱振幅的地震反射,与西南部强振幅水道砂岩形成鲜明的对比,波阻抗反演揭示丘内为低波阻抗,属泥岩范畴。梅山组塑性丘内地层发生重力扩展,在其上覆的脆性地层(强振幅砂岩和弱振幅泥岩)发育多边形断层,反推出梅山组形成于深水环境,丘为泥丘,沉积环境分析也认为北礁凹陷中中新世为半深海沉积,梅山组的丘-谷分别对应上覆地层的谷-丘,认为是底流剥蚀/沉积成因。本文的研究对南海北部丘形反射的认识有重要意义,并可降低油气探勘风险。  相似文献   
948.
Facies-scale trends in porosity and permeability are commonly mapped for reservoir models and flow simulation; however, these trends are too broad to capture bed and bed-set heterogeneity, and there is a need to up-scale detailed, bed-scale observations, especially in low-permeability reservoir intervals. Here we utilize sedimentology and ichnology at the bed- and bedset-scale to constrain the range of porosity and permeability that can be expected within facies of the Lower Cretaceous Viking Formation of south-central, Alberta, Canada.Three main facies were recognized, representing deposition from the middle shoreface to the upper offshore. Amalgamated, hummocky cross-stratified sandstone facies (Facies SHCS) consist of alternations between intensely bioturbated beds and sparsely bioturbated/laminated beds. Trace fossil assemblages in bioturbated beds of Facies SHCS are attributable to the archetypal Skolithos Ichnofacies, and are morphologically characterized by vertical, sand-filled shafts (VSS). Bioturbated beds show poor reservoir properties (max: 10% porosity, mean: 85.1 mD) compared to laminated beds (max 20% porosity, mean: 186 mD). Bioturbated muddy sandstone facies (Facies SB) represent trace fossil assemblages primarily attributable to the proximal expression of the Cruziana Ichnofacies. Four ichnological assemblages occur in varying proportions, namely sediment-churning assemblages (SC), horizontal sand-filled tube assemblages (HSF), VSS assemblages, and mud-filled, lined, or with spreiten (MLS) assemblages. Ichnological assemblages containing horizontal (max: 30% porosity, mean: 1.28 mD) or vertical sand-filled burrows (max: 10% porosity, mean: 2.2 mD) generally have better reservoir properties than laminated beds (max: 20% porosity, mean: 0.98 mD). Conversely, ichnological assemblages that consist of muddy trace fossils have lower porosity and permeability (max 10% porosity, mean: 0.89 mD). Highly bioturbated, sediment churned fabrics have only slightly higher porosity and permeability overall (max: 15% porosity, mean: 1.29 mD). Bioturbated sandy mudstone facies (Facies MB) contain ichnofossils representing an archetypal expression of the Cruziana Ichnofacies. Four ichnological assemblages occur throughout Facies MB that are similar to Facies SB; SC, HSF, VSS, and MLS assemblages. The SC (max: 15% porosity, mean: 21.67 mD), HSF (max: 20% porosity, mean: 3.79 mD), and VSS (max: 25% porosity, mean: 7.35 mD) ichnological assemblages have similar or slightly lower values than the laminated beds (max: 20% porosity, mean: 10.7 mD). However, MLS assemblages have substantially lower reservoir quality (max: 10% porosity, mean: 0.66 mD).Our results indicate that the most likely occurrence of good reservoir characteristics in bioturbated strata exists in sand-filled ichnological assemblages. This is especially true within the muddy upper offshore to lower shoreface, where vertically-oriented trace fossils can interconnect otherwise hydraulically isolated laminated sandstone beds; this improves vertical fluid transmission. The results of this work largely corroborate previous findings about ichnological impacts on reservoir properties. Unlike previous studies, however, we demonstrate that the characteristics of the ichnological assemblage, such as burrow form and the nature of burrow fill, also play an important role in determining reservoir characteristics. It follows that not all bioturbated intervals (attributed to the same facies) should be treated equally. When upscaling bed-scale observations to the reservoir, a range of possible permeability-porosity values can be tested for model sensitivity and to help determine an appropriate representative elementary volume.  相似文献   
949.
The Upper Jurassic marlstones (Mikulov Fm.) and marly limestones (Falkenstein Fm.) are the main source rocks for conventional hydrocarbons in the Vienna Basin in Austria. In addition, the Mikulov Formation has been considered a potential shale gas play. In this paper, organic geochemical, petrographical and mineralogical data from both formations in borehole Staatz 1 are used to determine the source potential and its vertical variability. Additional samples from other boreholes are used to evaluate lateral trends. Deltaic sediments (Lower Quarzarenite Member) and prodelta shales (Lower Shale Member) of the Middle Jurassic Gresten Formation have been discussed as secondary sources for hydrocarbons in the Vienna Basin area and are therefore included in the present study.The Falkenstein and Mikulov formations in Staatz 1 contain up to 2.5 wt%TOC. The organic matter is dominated by algal material. Nevertheless, HI values are relative low (<400 mgHC/gTOC), a result of organic matter degradation in a dysoxic environment. Both formations hold a fair to good petroleum potential. Because of its great thickness (∼1500 m), the source potential index of the Upper Jurrasic interval is high (7.5 tHC/m2). Within the oil window, the Falkenstein and Mikulov formations will produce paraffinic-naphtenic-aromatic low wax oil with low sulfur content. Whereas vertical variations are minor, limited data from the deep overmature samples suggest that original TOC contents may have increased basinwards. Based on TOC contents (typically <2.0 wt%) and the very deep position of the maturity cut-off values for shale oil/gas production (∼4000 and 5000 m, respectively), the potential for economic recovery of unconventional petroleum is limited. The Lower Quarzarenite Member of the Middle Jurassic Gresten Formation hosts a moderate oil potential, while the Lower Shale Member is are poor source rock.  相似文献   
950.
The Yuanba Gas Field is the second largest natural gas reservoir in the Sichuan Basin, southwest China. The vast majority of the natural gas reserve is from the Permian Changhsingian reef complexes and Lower Triassic Feixianguan oolitic shoal complexes. To better understand this reservoir system, this study characterizes geological and geophysical properties, spatial and temporal distribution of the oolitic shoal complexes and factors that control the oolitic shoals character for the Lower Triassic Feixianguan Formation in the Yuanba Gas Field. Facies analysis, well-seismic tie, well logs, seismic character, impedance inversion, and root mean square (RMS) seismic attributes distinguish two oolitic shoal complex facies – FA-A and FA-B that occur in the study area. FA-A, located in the middle of oolitic shoal complex, is composed of well-sorted ooids with rounded shape. This facies is interpreted to have been deposited in shallow water with relatively high energy. In contrast, FA-B is located in flanks of the oolitic shoal complex, and consists of poorly sorted grains with various shape (rounded, subrounded and subangular). The oolitic shoal complexes were mainly deposited along the platform margin. From the early Fei 2 Member period to the late Fei 2 Member period, the oolitic shoals complexes on the platform margin gradually migrated from the southwest to the northeast with an extent ranging from less than 100 km2–150 km2 in the Yuanba Gas Field. The migration of oolitic shoals coincided with the development of a series of progradational clinoforms, suggesting that progradational clinoforms caused by sea-level fall maybe are the main reason that lead to the migration of oolitic shoals. Finally, this study provide an integrated method for the researchers to characterize oolitic shoal complexes by using well cores, logs, seismic reflections, impedance inversion, and seismic attribute in other basins of the world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号